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Tetraethynylmethane (1) is the archetypal high carbon content 
monomer whose polymerization can, in principle, lead to a three-
dimensional carbon network homologous to diamond.1'2 The 
search for new high carbon content materials has included 
numerous studies on the synthesis and polymerization of poly-
acetylenic monomer units featuring a planar topography (e.g., 
tetraethynylethylene;3 polyethynylated aromatics4). While these 
monomers, in fact, do afford highly cross-linked polymeric 
products, difficulties in characterization complicate attempts to 
assess the bonding arrangement in these materials. Thus, the 
relationship between monomer geometry and "dimensionality" 
of the polymer (three-dimensional network or two-dimensional 
sheet) remains obscure. However, an inherently nonplanar 
monomeric hub5'6 such as 1 could eliminate this ambiguity: 
oligomerization of tetraethynylmethane to furnish two-dimen­
sional "graphitic" sheets would not be possible on energetic 
grounds. In this communication we report the synthesis of this 
intriguing and long sought after species' via a route which features 
(1) application of the Claisen rearrangement to furnish the 
sterically encumbered quaternary carbon in 1 and (2) development 
of an acetylene synthesis that proceeds in a very congested and 
demanding environment. 
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The synthesis of tetraethynylmethane commences with the 
known dibromide 2b,3 readily available in excellent yield from 
ketone 2a (Scheme I). Selective lithiation of one of the two 
bromine atoms in 2b afforded a putative7 alkenyllithium species 
which was stable to alkylidene carbene formation at -95 0C but 
condensed smoothly with gaseous formaldehyde to provide allylic 
alcohol 3 in good yield. Our initial attempts to apply Claisen 
methodology for the introduction of the remaining two skeletal 
carbon atoms of tetraethynylmethane were frustrated by the 
extreme base lability of alcohol 3. Thus, attempts to deprotonate 
the acetate formed from 3, or to utilize the alkoxide anion derived 
from 3 in a conjugate addition reaction preliminary to the [3,3] 
shift, led to extensive decomposition. Eventually, the acid-
mediated Johnson orthoester variant of the Claisen rearrangement 
proved serviceable, provided that an antioxidant was included in 
the reaction, yielding the key tetrasubstituted precursor 4. The 
triethynylated ester 5, available by a straightforward elimination/ 
silylation sequence, is one of the few completely characterized8 

triethynylated methane species which bear an additional carbon 
appendage. Conversion of the acetic acid residue in 5 to the 
fourth alkyne unit proved to be the most challenging aspect of 
this synthesis. Initial attempts employing a variety of precedented 
acetylene syntheses failed with the sterically encumbered substrate 
5. Eventual recourse to a modification of a procedure reported 
by Shibuya9 (sulfone rather than sulfide, [ (2,4,6-triisopropy-
lphenyl)sulfonyl]hydrazone rather than tosylhydrazone) provided 
the tetraethynylated species 7 in good yield from 6. The target 
molecule tetraethynylmethane (1) could be isolated in excellent 
yield as a white, powdery solid following desilylation of 7. 

Unfortunately, solid tetraethynylmethane rapidly decomposed 
to a brown oil over the course of a few minutes at room temperature 
in either the presence or absence of oxygen. Spectroscopic analysis 
of the decomposition product(s) (1H, 13C NMR, MS) revealed 
the presence of hydrated species (1 + 2H2O) and a preponderance 
of NMR signals normally associated with aliphatic moieties. A 
dilute sample of 1 frozen in CeD6 could be maintained at O 0C 
for at least 3 weeks without any evidence of deterioration. In 
contrast, the trimethylsilylated tetraethynylmethane precursor 7 
is much more robust: it can be handled under ambient conditions 
without event. 
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Figure 1. X-ray crystal structure of 7. 

X-ray crystallographic analysis of the silyl-protected species 
7 (Figure 1) both confirmed the spectroscopically based structural 
assignment and revealed some of the subtle geometric conse­
quences which attend crowding four alkynyl units about a single 
carbon atom. Thus, the C(sp3)-C(sp) bonds (1.48,1.50 A) are 
lengthened by approximately 0.04 A compared with "standard" 

J. Am. Chem. Soc, Vol. 115, No. 9, 1993 3847 

model systems,10 while the alkyne bonds themselves (1.14, 1.16 
A) are all contracted by a similar amount. In essence, it appears 
that the internal alkyne carbons have been "displaced" outward 
by ~0.04 A away from the central sp3 carbon, perhaps as a 
consequence of steric crowding. However, none of the alkyne 
units display a deviation from linearity of more than 4°. 

In summary, we have prepared tetraethynylmethane (1) in 10 
steps and in 16% overall yield from bis trimethylsilyl ketone 2a. 
Tetraethynylmethane is quite labile under ambient conditions, 
perhaps as a result of geometrically "distorted" alkyne units, while 
the trimethylsilylated precursor 7 could be handled without event. 
Exploration of the oligomerization/polymerization chemistry of 
1 and its analogs is underway, and results will be reported in due 
course. 
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